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 _Original Article_

 To GEE or Not to GEE

 Comparing Population Average and Mixed Models for Estimating the
 Associations Between Neighborhood Risk Factors and Health

 Alan E. Hubbard? Jennifer Ahem? Nancy L. Fleischer? Mark Van der Laan? Sheri A. Lippman?
 Nicholas Jewell? Tim Bruckner? and William A. Satarianoh'd

 Abstract: Two modeling approaches are commonly used to esti
 mate the associations between neighborhood characteristics and
 individual-level health outcomes in multilevel studies (subjects

 within neighborhoods). Random effects models (or mixed models)
 use maximum likelihood estimation. Population average models
 typically use a generalized estimating equation (GEE) approach.
 These methods are used in place of basic regression approaches
 because the health of residents in the same neighborhood may be
 correlated, thus violating independence assumptions made by tradi
 tional regression procedures. This violation is particularly relevant
 to estimates of the variability of estimates. Though the literature
 appears to favor the mixed-model approach, little theoretical guid
 ance has been offered to justify this choice. In this paper, we review
 the assumptions behind the estimates and inference provided by
 these 2 approaches. We propose a perspective that treats regression

 models for what they are in most circumstances: reasonable approx
 imations of some true underlying relationship. We argue in general
 that mixed models involve unverifiable assumptions on the data
 generating distribution, which lead to potentially misleading esti
 mates and biased inference. We conclude that the estimation-equa
 tion approach of population average models provides a more useful
 approximation of the truth.

 {Epidemiology 2010;21: 461-41 A)

 Agrowing body of research has examined neighborhood level characteristics in association with patterns of
 health, functioning, and survival in populations.1 Many of
 these analyses employ a multilevel approach, examining
 neighborhood-level exposures in association with individual
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 level outcomes, while adjusting for individual- and neighbor
 hood-level confounders. One objective of these studies has
 been to determine the associations of community character
 istics (eg, crime statistics and environmental exposures) with
 health outcomes after adjusting for individual characteristics
 of residents.2

 Two modeling approaches are commonly used to esti
 mate the associations between neighborhood characteristics
 and health outcomes in multilevel studies. One is the random

 effects or mixed model, which uses maximum likelihood
 estimation,3 and the other is the population average model,
 which typically uses a generalized estimating equations
 (GEE).4 These methods are used in place of basic regression
 because the health status of residents in the same neighbor
 hood may be correlated, thus violating the independence
 assumptions of traditional regression models. In the neigh
 borhood-effects literature to date, the mixed model has been
 favored, perhaps because it involves explicit modeling and
 partitioning of the covariance structure of the outcomes
 within and between neighborhoods. Partitioning the variance
 allows the calculation of the proportion of variance in the
 outcome due to neighborhood-to-neighborhood variation
 against that due to the variance among individuals within a
 neighborhood, as well as changes in these variance compo
 nents after adjustment for exposures and confounders at both
 the neighborhood and individual-levels. The ability to
 partition variance within and between neighborhoods is an
 alluring feature of mixed models, but it is only one of a
 larger set of issues that should be considered when select
 ing an analytic approach. Our paper aims to contrast
 regression methods for studying associations between
 neighborhood-level exposures and individual-level out
 comes; other issues regarding causal inference in neigh
 borhood studies have been addressed elsewhere.5

 There are many overviews of mixed models and pop
 ulation average models.6-9 The purpose here is to review the
 assumptions of each approach as relevant to studies of neigh
 borhood effects. Our overarching perspective that it is gen
 erally most realistic to think of regression models as approx
 imations of the truth, with results from mixed models
 possibly biased given the reliance on untestable assumptions
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 on the data-generating distribution. It is typically most real
 istic to think of a high-dimensional (eg, many covariates)
 regression model as an approximation of some true underly
 ing and unknowable model. A mixed model requires correct
 specification of the regression models for the so-called fixed
 effects coefficients as well as distributional assumptions and
 regression models for the random effects. If the model is

 misspecified (ie, an incorrect model form is used to estimate

 the mean of outcome Yy given covariates Xtj for person /
 within neighborhood j) one can still define the parameter of
 interest as the regression model that would be estimated if the
 entire target population was used as the sample. However, it
 is unclear how one interprets coefficients in a misspecified

 mixed-effects model. As we discuss below, there is no gen
 erally interpretable parameter that can be defined as the
 projection of a misspecified mixed model onto the true
 underlying model, whereas with the population average
 model, there is hope to explicitly define this projection
 (approximation). In fact, even when the fixed effects part of
 a model is correctly specified, depending on how the true
 random-effects model relates to the estimating model, the
 estimated fixed effects can be very misleading. Since the
 latent, random-effects distribution is nonidentifiable, larger
 sample sizes do not help.

 To illustrate the various concepts in this paper, we will
 refer to a theoretical study of neighborhood crime rates and
 their influence on the probability that neighborhood residents
 walk more than 2 hours/week. We begin by reviewing the
 general characteristics of the mixed model and GEE/popula
 tion average model approaches. Next, we contrast the interpre
 tation of regression coefficients of mixed versus population
 average models, particularly in the context of neighborhood
 studies. We then discuss the implications of considering the
 regression model (the fixed effects part of the model) as an
 informative approximation of the true model based on a

 misspecified class of regression models. The paper ends with
 a discussion comparing the 2 approaches.

 MIXED MODELS
 A mixed-model approach is predicated on the idea that

 heterogeneity exists across neighborhoods for some of the
 regression coefficients, and that the heterogeneity can be
 represented by a probability distribution. This approach pro
 vides a specific model for the conditional distribution of the
 outcome given covariates and random effects, and the distri
 bution of random effects given covariates, implying a fully
 specified model for the distribution of outcome, given covari
 ates. Let be the outcome for subject / within neighborhood

 7, ix{Xtj I /3) the average "response" of a person with the same
 covariates Xip /3 a set of fixed coefficients, and U^aj, Xtj) an
 error term that is a function of "neighborhood" random
 effects, olj, and perhaps is also a function of the covariates.
 The mean of the /th person in the fh neighborhood in this
 context can be written as:

 E(Yy I Xip aj) = g[/x(^- I 0) + Utj(ap XtJ)] (1)

 g is the link function depends on the regression (eg,
 linear: g~l(u) = u,

 log:g~\u) = log(u% logistic: g~\u) = log[u/(l-u)])
 and E{ Uy{ap Xtj) I XfJ} = 0. To make this notation more
 concrete, consider Ytj = 1 if subject / in neighborhood j walks
 more than 2 hours per week, 0 otherwise and Xtj is a
 continuous measure of crime rate for neighborhood j (would
 be the same for each / within j). Here is a simple random

 effects model that relates Ytj and Xip allowing for both
 neighborhood-to-neighborhood variability in the underling

 probability of walking (at Xtj = 0, represented by a0j) as well
 as variability in the slope of the logit of the probability versus

 crime rate (represented by aly):

 PiY^WX^aj)
 log
 \l -P(Yy = 1 \Xipaj)u

 = /30 + ?oy + (/3i + a^y, ay - A/W(0, 2). (2)

 In this case, the logit link is used because Ytj is binary,
 and thus

 E(Yy\Xy,aJ)=P(Yy=l \Xipaj), rfXv ' P) = 00 +
 ^xXip where ]3 = (j30, 00, ^/(^ Xy) = ?o, + ?iA and
 olj = (aop otxj). Thus, the model for the mean walking
 variable of an individual within neighborhood j is a function

 of measured variables (A^.), unknown parameters (0), and
 unmeasured (latent) variables (ay). The estimates of the so
 called fixed effects (/3) and parameters of the distribution of
 the error terms are then derived via maximum likelihood (or
 restricted maximum likelihood). Due to the conditional error

 distribution, the mean model implies a model for Yip given Xtj
 and ap In addition, if one also asserts a model for the
 distribution of ap given Xtj (as we have in the example above)
 then one can derive the likelihood of the observed data,

 specifically of Ytj given Xip This likelihood is derived by
 integrating the likelihood for theoretical data (as if one
 observes Uy{ap XJj) over the proposed distributions of the
 residual error and ap The inference (ie, standard error calcu
 lations) for the estimates of the coefficients are typically
 derived via standard maximum likelihood inference (or re
 stricted maximum likelihood), the accuracy of which relies
 on both the underlying mean and error distribution models
 being correctly specified.

 Given the class of mixed models usually considered
 (Equation 1), the regression coefficients in the linear and
 log-linear mixed models can be interpreted as either coeffi

 cients of the conditional mean of Ytj and Xtj (conditional on
 aj) or as coefficients of the population average association of
 Yy and Xip E{Yij I XtJ). We discuss in more detail later the
 specific instance of logistic regression models where, unlike
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 the linear and log-linear case, the coefficients are not equiv
 alent in the random-effects and population-average models.
 Because of the overlap of interpretation of the coefficients in
 the linear/log-linear case, one can obtain "robust" inference

 for the coefficients, (relying only on correct model for EiYy I
 Xjj))9 either by appropriately bootstrapping10 or using a sand
 wich-type estimator.11 However, the typical inference pro
 vided by mixed models algorithms is based on the assumption
 that the model for the underlying random effects distribution
 is correctly specified.

 The likelihood of the observed data with respect to the
 distribution of both the observed and unobserved latent vari

 ables (density of Yip given Xiy) in a mixed model is as follows:

 L{Ytj I X(J)=jfiYtj I Xip aj)h(aj I Xi;)dap (3) CLj

 which can be interpreted as the average probability density

 function of Ytj given (Xip a]) averaged over the probability
 density of ap h(aj I Xy). For instance, in our example above
 (Equation 2):

 Wty I X0) = j j P{YtJ I XiJt a0J, aXJ)h{a0J, aiJ)da0J dalp ? OC ? X

 where h is the multivariate normal probability density func
 tion with mean vector (0, 0) and covariance matrix, 2. The
 mixed model in which data for individuals /, within the same

 neighborhood j, are generated from common random vari
 ables ap will imply correlation of the observations within the
 same neighborhood. This often motivates the use of such
 models. However, an infinite variety of combinations of
 densities/and h could provide the same marginal distribution

 of Yip given Xip This means that the random-effects model for
 the density is nonparametrically nonidentifiable, because only

 the distribution of the observed data (the Yip Xtj) can provide
 information about the fit of competing models. There are

 an infinite number of combinations of fiY^ I Xip aj) and
 h(ctj I Xy), which result in the same 1(7^ I XtJ). When these
 models are used, the hope is that the misspecification of the
 joint distribution of the error terms and random effects does
 not make the estimates and inference provided by this pro
 cedure unduly misleading.

 POPULATION AVERAGE MODELS
 The coefficient estimates returned by the generalized

 estimating equations (GEE) typically used to estimate popu
 lation average models (sometimes called marginal models)
 describe changes in the population mean given changes in
 covariates, while accounting for within-neighborhood non
 independence of observations when deriving the variability

 estimates of these coefficients. One can also use maximum

 likelihood-based methods for estimation of this parameter
 (for instance, see Heagerty and Zeger8), so we do not want to
 confuse the estimation method (GEE) with the parameter
 (population-average models). The GEE approach does not
 require distributional assumptions because estimation of the
 population-average model depends only on correctly speci
 fying a few aspects of the observed data-generating distribu
 tion (ie, the mean of the outcome given the covariates), not on
 the entire joint distribution of observed data and random
 effects. The GEE approach requires only (1) proposing a
 parameter of interest (in our case, the coefficients in the

 model of ESjy I XtJ] or the probability of walking among
 individuals that live in neighborhoods with crime rate Xtj) and
 (2) finding an estimating function that has mean 0 if the true
 parameters are entered into that estimating function. We
 provide an associated technical report15 with a general form
 of the estimating function on which the estimating equations
 are based.

 For linear models, the estimating-equation approach
 sometimes provides practically the same estimator of the
 parameters (for instance, a type of weighted least squares) to
 a specific mixed model (eg, the estimator that is based on
 maximum likelihood and a mixed model). For instance, a
 simple random intercept linear model implies equal variances
 for all observations and equal covariances of all possible
 paired observations within the statistical unit (neighborhood)
 and as always no correlation of observations made on differ
 ent units. This will yield the same estimates as the exchange
 able working correlation model in GEE. Thus, in specific
 circumstances, the estimates provided by a GEE approach
 and a mixed-model approach (where both result in the same
 estimated variance-covariance model of observations on the

 same unit) are equal. However, the 2 approaches depart in
 this case when deriving the inference for what might be
 equivalent parameter estimates of j8. With the estimating
 equation approach, no likelihood has been specified, so max
 imum likelihood inference is not available for these estima

 tors. Instead, robust or sandwich inference is typically
 provided.4 With the more technical detail available in the
 associated technical report,15 one can show that these esti
 mators are asymptotically linear (ie, they can be written
 asymptotically as a sum of independent and identically dis
 tributed random variables, called the influence curve). If there
 is a closed-form representation of the influence curve (which

 will be the same dimension as the number of coefficients, ]3)
 one can derive robust inference of $ and the resulting stan
 dard errors by estimating the sample variance-covariance of
 these random variables (influence curve components), mak
 ing no assumptions about the underlying distribution of the
 data. To gain some intuition, we note that an equivalently
 valid method of inference in this case would be the nonpara
 metric bootstrap, where one (1) randomly resamples neigh
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 borhoods with replacement to create a new pseudo-popula
 tion of the same size (with regard to number of independent
 units) as the original data, (2) performs the same estimation
 procedure as conducted on the original data, and (3) repeats
 this procedure many times. For each run of the bootstrap, b,
 let 0b, b = 1,. . .9B be the estimated vector of coefficients,

 $b = (/3q, ]3t,. . .,$p). Now, the variance-covariance of the
 estimated coefficients among these bootstrap samples is pro
 vided by simple sample variance-covariance estimates of

 1 b
 j8*, eg, cov(& j8y) = -2(j8?-M)(|8f-^), where B 6=1

 1 B

 &b = i

 The one caveat to an otherwise straightforward ap
 proach is that the number of neighborhoods has to be suffi
 ciently large; the inference is asymptotically correct but not
 necessarily accurate in smaller samples. Thus, one should be
 skeptical of the robust standard error estimates based on the
 influence curve in GEE in cases in which the number of

 neighborhoods is relatively small. In the case of a few
 neighborhoods with large numbers of observations, it might
 be preferable to base inference on certain assumptions (say
 exchangeability) and thus capitalize on the large number of
 subunits (people) available for estimating the few compo
 nents of the variance-covariance matrix; this would rely on
 the so-called "naive" inference returned by some GEE pro
 cedures.

 PARAMETER INTERPRETATION IN MIXED
 VERSUS POPULATION AVERAGE MODELS

 To illustrate the differences in parameter interpretation
 between mixed models and population-average models, we
 continue with the example relating crime rates within neighbor
 hoods to the mean walking level of neighborhood residents. We
 now use a simpler random intercept version of Equation 2:

 10git[P(7^= 1 \Xip OLojj]

 = 0o + oloj + fixXip a0J ~ N(0, a). (4)

 Within this model, the interpretation of the coefficient
 j3j relates changes in the mean of the outcome (proportion

 walking) via changes in the crime rate within the higher units
 (neighborhoods). In general, for multivariable random-inter
 cept logistic-regression models, the nonintercept fixed-effect
 parameters are interpreted as the log [odds ratio (OR)] for a
 change in the associated explanatory variable, holding the
 neighborhood fixed. In our example, ^ is the log(OR) of
 walking for a unit increase in crime rate holding the neigh
 borhood fixed.

 Now, assume a logistic regression population average
 model, or logit [P(^ = 1 I X^] = p*0 + (note that the

 random intercept model above does not imply this form as the
 correct population average model), where * indicates that
 these coefficients are not the same parameters as in the
 random intercept model. Specifically, j3* is a measure of
 association relative to changes in explanatory variables across
 neighborhoods or the log(OR), comparing the probability of
 walking for individuals who live in neighborhoods that differ
 by 1 unit of crime rate.

 Although they estimate theoretically different parame
 ters in this logistic case, for linear and log-linear models, the
 coefficients from the typical specification of mixed-effects
 models will be numerically equivalent to coefficients from
 the population-average models, given that both models imply

 the same model for E(Ytj I Xtj). In the linear case, this can be
 seen by noting that population-average model is derived by
 averaging the neighborhood-specific model across neighbor
 hoods, or

 E(YiJ\Xij) = Eaj[E(YiJ\XipaJ)]

 Thus, for linear and log-linear models, the distinction
 between estimating a within-neighborhood effect using max
 imum likelihood estimation and a population-average effect
 using GEE is less critical; the coefficient estimates returned
 from the mixed-model estimating procedures are estimates of
 both such effects.

 In contrast, much has been made of the differences in
 the actual numerical values of coefficients from a logistic

 mixed model versus the population-average model. For in
 stance, one can show that the population average OR is
 always closer to the null value of 1 than the corresponding
 mixed effects OR when the true model is a simple random
 intercept model.12 To be more concrete, consider a situation

 with Xtj is binary (crime rate 1 = high, 0 ? low), then the
 slope coefficients in a random-intercept logistic-regression

 model is the average within neighborhood log(OR) of walk
 ing when the neighborhood is at high versus low crime,

 whereas the population-average logistic regression produces
 an estimate of the log(OR) that compares the average prob
 abilities of walking (averaged across all neighborhoods) in
 high-crime versus low-crime neighborhoods.

 For typical cross-sectional neighborhood-level data
 (the Xtj is constant for all / within a j), the estimate of the
 association within the random effects model has to come

 from comparisons across neighborhoods, because no within
 neighborhood log(OR)s are estimable directly. Thus, the
 estimate of the slope coefficient (the fix in Equation 4)
 depends on assumptions about the distribution of the random
 effect: by assuming, for example, normality of an unmea
 sured random effect, only then is the within-neighborhood
 effect estimable from the data. Thus, papers such as Larsen
 and Merlo,13 which provide statistics for characterizing the
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 amount of between-neighborhood variability returned from
 these random effects models, are useful only insofar as the
 assumptions behind these random-effects models are not
 strongly violated. Note that Carlin et al14 discuss another inter
 esting latent-variable model based on discrete mixtures, and
 provide an example in which the typical normal assumption for
 the random effect is questionable. However, one should be
 cautious, when interpreting estimates that are sensitive to distri
 butional assumptions on unmeasured variables.

 REGRESSION MODELS AS PROJECTIONS
 A appropriate analytic approach is to: (1) propose the

 scientific question of interest, (2) determine the relevant
 parameter of interest that addresses the question, (3) propose
 an estimator that might require empirically nonidentifiable
 assumptions, and (4) report the estimate with appropriate
 caveats.8 Latent variable models, including mixed models
 (see Equation 2 for instance), always require assumptions
 untestable by the data. These models might uniquely address
 the specific scientific question of interest, for instance by
 evaluating the association of latent variables, but the infor
 mation they provide in the form of the estimates of the
 parameters of interest (for instance, the within-unit associa
 tions of neighborhood-level variables) can be misleading if
 the latent variable model is misspecified. To derive reliable
 likelihood-based inference, the model should not represent an
 approximation, but rather the true form of the mean model
 given the covariates and latent variables. Lack of compelling
 theory for a particular model choice, and an insufficient
 sample size to estimate the mean model flexibly, results in
 estimated regressions models that are, at best, reasonable
 approximations to the conditional mean. If the latent variable
 part is not modeled correctly, it is unclear how to interpret the
 fixed-effects estimates even if that part of the model is

 correctly specified. The situation becomes even more com
 plicated with the misspecification of the fixed-effects portion.

 In contrast, one could reasonably justify estimating an
 informative approximation of the true population-average

 model (and in theory this parameter is estimable with few
 assumptions in large sample sizes). With this approach, one
 could avoid any model specification (ie, the model is non
 parametric) and the parameter of interest would be some

 approximation of E\Ytj I Xtj\ within the proposed class of
 estimating models (eg, linear with only main effects). That is,
 one can define explicitly the parameter of interest as a
 function of the distribution of the observed data (X, Y). (Note:
 the approximation can be different depending on what work
 ing correlation structure one uses in GEE?see an associated
 technical report for details.15) In essence, one can think of the
 parameter of interest as the coefficients one would derive if

 the proposed model, ^(X^ I j3), using a particular algorithm,
 was fit to not just a sample of people in a sample of
 neighborhoods, but instead the entire target population of
 interest using the proposed estimation algorithm (eg,

 weighted least squares using the weight matrix implied by the
 working correlation model specified in the GEE models).

 For example, consider a simple nonrepeated-measures
 data structure and the true model Y = b0 + bxX + b^2 + e
 with e~N(0, o2). Assume one fits a linear model of 7onXto
 data from the underlying population generated by this qua
 dratic model. Also assume that the parameters of interest are
 the c0 and cx one would obtain if one fit a linear model Y =
 c0 + cxX + e to the entire population. Figure 1 shows (1) the
 underlying true mean model, (2) the projection of a linear
 model on the truth, (3) actual data from the underlying true
 model, and (4) the fit of a linear model to that data. This
 caricature illustrates what generally happens when regression
 models are fit for explanatory purposes. If one thinks of the

 8 n / CVJ _ /
 - truth /?
 - - projection o / 9 fit o/ y'\ 8- 1-1 ?

 o . y to - ^

 * ? y'' /
 ? - ^/ ? 0 0

 w" <''-'''*<^

 o o ^S^^"^ ?
 O -J-' b

 0 2 4 6 8 10 FIGURE 1. Example of truth, projec
 x tion, data, and fit.
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 parameter of interest as the true conditional mean of 7, given
 the covariates of interest, then one is almost always wrong.

 However, if one views the parameter of interest as a projec
 tion of the "truth" onto some smaller set of models (eg,
 linear), this is often a reasonable parameter of interest. (Of
 course, one can easily come up with exceptions, for example
 a linear model would fail to capture a U-shaped relationship.)
 For instance, one might want to know the average trend. In
 that case, a linear fit to data generated from an underlying
 nonlinear model is a legitimate parameter. Other examples
 could include fitting a linear model when the true model is
 log-linear, etc.

 Consider the case of a mixed model in which the true

 data generating distribution has the following form (binary
 outcome) of:

 PiYy =11^, bj log
 \l-PiYy= 1 \Xip b0i)m

 = b0 + bxXtj + bofixtfb^), b0i ~ N(0, 1)

 This is a random effects model, but one in which the

 OR for a unit change in Xip by unit /, depends on the level
 of the random effect, b0i. Now, we examine different fits to
 data generated from this data-generating distribution (note

 that Xy is uniformly distributed over the integers 0 to 10,
 b0 = -5, bx = log{2\ b2 = 0.5, 100 units and 100
 subunits/unit). The results of this analysis are presented in
 Figure 2, which depicts (1) the true marginal probability of

 the outcome, by Xip P(Yy = 1 I XtJ), (2) the best approx
 imation based on a simple logit-linear model and indepen
 dence working correlation model, (3) the corresponding

 GEE estimate of this approximation, (4) the estimate using
 the same data as that for the GEE model of a simple
 random effects (random intercept) logistic regression

 model (the plot is done at the random effect, b0i = 0), and
 (5) the population-average mean estimate derived from the

 misspecified random effects model by marginalization
 over the estimated random effects distribution.

 The results emphasize that the projection of the popu
 lation average is something one can hope to estimate, and that
 it bears a rigorously definable relation to the true underlying
 association. In contrast, the misspecified random-effects
 model estimate bears little relation to the true underlying
 marginal association (of course, it is not an estimate of this
 parameter). It is unclear how to interpret the results of this
 model because the distribution of individual curves (ie,
 neighborhood-level curves) can differ widely depending on
 the form of the random-effects model and the distribution of
 the random effects.

 Finally, the population-average mean estimate from a
 misspecified random-effects model is of course biased and
 unnecessarily so, as one need not specify the correct random
 effects part to estimate this parameter. If the random effects
 part is misspecified, both the resulting neighborhood-specific
 effects (eg, coefficients in a random effects model) and the
 implied estimated population average model can be unpre
 dictably biased relative to the quantities they are estimating.
 Heagerty and Zeger8 make a very similar point, that the
 regression parameters in conditionally-specified models (the
 fixed effects in random effects models) are much more
 sensitive to random-effects assumptions than are their coun
 terparts in the population-average model.

 Given the objective of providing a reasonable approx
 imation of the population average within covariate groups,

 q

 - Truth
 oo -True Projection

 d ~ GEE Fit
 ? Random Effects at Mean Intercept
 -Pop. Ave. Estimate from RE Model

 FIGURE 2. Example of truth popula- _ ? - . .
 tion average model, true projection | .- "^'^^li-^^"^'
 onto a logit-linear regression model, ? ?
 a GEE fit assuming a simple logit- r ^ _ ^^^T^' ' '
 linear model as estimated from ran- ? ^ ' '
 dom sample of data, a corresponding ; J ' . - '
 estimate of the fixed effects coeffi- ^ ~ ^ ' '
 cients in a logit-linear random effects ? "
 (RE) model with a normally distrib
 uted random intercept by unit, and _^r-r^?_
 the population average model de- ? J
 rived from the estimate of this ran- I * I J 1
 dom effects model. x
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 then inference can be derived from the robust sandwich

 estimators of variability used by the GEE approach. Freed
 man16 discusses how the robust estimators of standard errors

 are correct even if the mean model is misspecified. However, he
 argued that one wants a confidence interval for the true param
 eter, not its projection. In contrast, we take the perspective that
 these projections can yield useful information about the relation
 ship of neighborhood factors and health outcomes and thus, for

 many purposes, the important issue is how inferences are de
 rived for this nonparametric model. In Figure 1, the above case
 of an interpretation of linear projection is relatively straightfor
 ward, but further research is needed to interpret the more general

 case (ie, when the coefficients of a mixed model cannot be
 interpreted as coefficients in the corresponding population aver
 age model, such as in the logistic case). There are some cases
 where the estimated parameter can be quite misleading relative
 to the parameter of interest (see for example van der Laan et
 al17). Neugebauer and van der Laan18 describe the parameter of
 interest as some nonparametric projection of regression models
 onto the true underlying (causal) regression form. Their devel
 opment of the theory is modified in our technical report.15
 Essentially, given that the projection of the mean model is
 interpretable and useful, one can always gain robust inference
 using the type of robust inference provided by GEE or by using
 the appropriate bootstrap.

 DISCUSSION
 The contrast of estimation of the population-average

 model and corresponding mixed-effects models is part of
 larger issues in statistical estimation and identifiability. A
 simple list of the elements of data analysis provides a basis
 for understanding the intersection of the scientific question,
 data and statistical estimation: (1) the observed data, (2) the
 model (set of possible data-generating distributions given
 background knowledge), (3) parameter of interest of data
 generating distribution that addresses scientific question, (4)

 estimation of this parameter, and (5) additional nontestable
 assumptions on data-generating distributions. The data can of
 course identify (without further assumptions) only the joint

 distribution of the observed data, say Oj = (Yp XJ), where Yj
 and Xj are the vector of outcomes and corresponding matrix
 of explanatory variables measured on neighborhood j. Mixed
 models, however, estimate parameters of a combined latent

 variable/observed variable distribution, say Of = (Yp Xp af),
 where again a- are the neighborhood-level unobserved ran
 dom variables. Interpretations of parameters of the distribu

 tion of Of should require justifications (outside the data) as
 to why this theoretical data structure is warranted, much as
 causal inferences from associations in observational data

 require untestable assertions such as unmeasured con
 founding. Raudenbush24 sensibly argues that, if the scien
 tific question of interest suggests parameter estimates that
 involve assumptions on latent variable distributions, then
 inference based on such assumptions in unavoidable. How
 ever, one must acknowledge that the evidentiary weight of
 such inference is not on par with the inferences made
 regarding parameters based on assumptions only on the
 observed data distribution.

 We have already discussed reasons why the data can
 not identify the true distribution of Of (assuming the true
 distribution can even be represented in that way). How
 ever, the data can be used to examine the relative merits

 (fit) of competing models for Of. In fact, as opposed to the
 GEE approach, a very attractive approach is to fit various
 models (random effects and others) that result in different

 models for the distribution of Op and use likelihood-based
 procedures (such as likelihood-based cross-validation) to
 select those models. However, inference in the end should,
 without further untestable assumptions, be only with re
 gard to the resulting distribution of the observed data, Oj.

 The Table provides a summary of critical issues to
 consider when selecting a modeling approach. If the analyst

 TABLE. Summary of Approaches for Mixed Models and GEE

 Mixed Models GEE

 Focus of interest Variance components and regression coefficients Regression coefficients
 Parameter interpretation Neighborhood specific Population average
 Linear (estimates equivalent) Change in the mean outcome for a unit change in the Change in the mean outcome for a unit change in

 associated neighborhood exposure, keeping the the associated neighborhood exposure across all
 random effect (neighborhood) fixed of the neighborhoods observed

 Binary (estimates NOT equivalent) The log(OR) of an outcome for a unit change in the The log(OR) of an outcome for a unit change in
 associated neighborhood exposure, keeping the the in the associated neighborhood exposure
 neighborhood fixed. Not identifiable in cross-sectional across all of the neighborhoods observed
 studies of neighborhoods without additional
 assumptions on random effects distribution.

 Assumptions Correctly specified error distribution No. neighborhoods sufficiently large for robust
 estimation of standard errors

 Pitfalls SE not robust to model misspecification (can use With small no. neighborhoods, SE biased
 regression diagnostics) (although not substantially so in simulations

 with small numbers of units)
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 aims to understand the error structure of the data-generating
 distribution, or wants to derive the estimate of within-unit OR
 from cross-sectional data, then there is no choice but to use

 modeling procedures that make explicit untestable assump
 tions of the data-generating distribution, such as those within

 mixed models. One should be cautious, given how sensitive
 the conclusions can be to the assumptions of these models.
 However, if the focus of the analysis is the estimation of
 mean effects as well as the estimation of the inference of the

 coefficients in the model (eg, the association of walking and
 neighborhood crime rate), then estimating the population
 average model via GEE provides a compelling alternative.
 GEE allows robust inference even if the correlation model is

 misspecified, or the parameter of interest is not the true mean

 model but a projection onto a class of approximating models
 (eg, linear model), as in Figure 1 above. We assert that this is
 usually the case in statistical models of observational data
 with many explanatory variables.

 We have compared 2 methods for estimating neighbor
 hood-level effects. We contend that researchers should make

 explicit the assumptions of each method and also consider
 situations where one method might be preferred over the
 other. Previous discussions have provided interesting points
 regarding each method, and philosophical viewpoints on the
 relative merits.19-21 However, the relative merits are not a

 question of philosophy?once the data are presented, the
 parameter of interest stated, and the assumptions made ex
 plicit and accepted, then the choice should be straightforward.
 In addition, this choice of estimating population-average

 models versus mixed models goes beyond a choice between
 GEE and mixed models. Similar questions are being actively
 debated in the literature on causal inference. There are issues

 regarding competing likelihood-based latent variable meth
 ods (such as structural equation models) versus estimating
 function-based methods22 and related targeted maximum
 likelihood23 methods that avoid latent-variable formulations.

 The underlying issues and user recommendations are similar.
 Does one rely on correct specification of untestable aspects of
 the data-distribution (the latent variable approach) or on the

 more narrow assumptions available from the other causal
 inference methods? The answer will depend on the goals of
 the analyses, but should also depend on information available
 to the researchers. Knowing the assumptions of each method
 and how these assumptions affect the inferences from the
 analysis will enable researchers to determine the best ap
 proach to analyzing their data.
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