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ORIGINAL ARTICLE

To GEE or Not to GEE

Comparing Population Average and Mixed Models for Estimating the
Associations Between Neighborhood Risk Factors and Health

Alan E. Hubbard,® Jennifer Ahern,® Nancy L. Fleischer,® Mark Van der Laan,* Sheri A. Lippman,®
Nicholas Jewell® Tim Bruckner,® and William A. Satariano®

Abstract: Two modeling approaches are commonly used to esti-
mate the associations between neighborhood characteristics and
individual-level health outcomes in multilevel studies (subjects
within neighborhoods). Random effects models (or mixed models)
use maximum likelihood estimation. Population average models
typically use a generalized estimating equation (GEE) approach.
These methods are used in place of basic regression approaches
because the health of residents in the same neighborhood may be
correlated, thus violating independence assumptions made by tradi-
tional regression procedures. This violation is particularly relevant
to estimates of the variability of estimates. Though the literature
appears to favor the mixed-model approach, little theoretical guid-
ance has been offered to justify this choice. In this paper, we review
the assumptions behind the estimates and inference provided by
these 2 approaches. We propose a perspective that treats regression
models for what they are in most circumstances: reasonable approx-
imations of some true underlying relationship. We argue in general
that mixed models involve unverifiable assumptions on the data-
generating distribution, which lead to potentially misleading esti-
mates and biased inference. We conclude that the estimation-equa-
tion approach of population average models provides a more useful
approximation of the truth.

(Epidemiology 2010;21: 467—-474)

growing body of research has examined neighborhood-
level characteristics in association with patterns of
health, functioning, and survival in populations." Many of
these analyses employ a multilevel approach, examining
neighborhood-level exposures in association with individual-
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level outcomes, while adjusting for individual- and neighbor-
hood-level confounders. One objective of these studies has
been to determine the associations of community character-
istics (eg, crime statistics and environmental exposures) with
health outcomes after adjusting for individual characteristics
of residents.?

Two modeling approaches are commonly used to esti-
mate the associations between neighborhood characteristics
and health outcomes in multilevel studies. One is the random
effects or mixed model, which uses maximum likelihood
estimation,® and the other is the population average model,
which typically uses a generalized estimating equations
(GEE).* These methods are used in place of basic regression
because the health status of residents in the same neighbor-
hood may be correlated, thus violating the independence
assumptions of traditional regression models. In the neigh-
borhood-effects literature to date, the mixed model has been
favored, perhaps because it involves explicit modeling and
partitioning of the covariance structure of the outcomes
within and between neighborhoods. Partitioning the variance
allows the calculation of the proportion of variance in the
outcome due to neighborhood-to-neighborhood variation
against that due to the variance among individuals within a
neighborhood, as well as changes in these variance compo-
nents after adjustment for exposures and confounders at both
the neighborhood and individual-levels. The ability to
partition variance within and between neighborhoods is an
alluring feature of mixed models, but it is only one of a
larger set of issues that should be considered when select-
ing an analytic approach. Our paper aims to contrast
regression methods for studying associations between
neighborhood-level exposures and individual-level out-
comes; other issues regarding causal inference in neigh-
borhood studies have been addressed elsewhere.’

There are many overviews of mixed models and pop-
ulation average models.®~® The purpose here is to review the
assumptions of each approach as relevant to studies of neigh-
borhood effects. Our overarching perspective that it is gen-
erally most realistic to think of regression models as approx-
imations of the truth, with results from mixed models
possibly biased given the reliance on untestable assumptions
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on the data-generating distribution. It is typically most real-
istic to think of a high-dimensional (eg, many covariates)
regression model as an approximation of some true underly-
ing and unknowable model. A mixed model requires correct
specification of the regression models for the so-called fixed
effects coefficients as well as distributional assumptions and
regression models for the random effects. If the model is
misspecified (ie, an incorrect model form is used to estimate
the mean of outcome Y;; given covariates X;; for person i
within neighborhood ;) one can still define the parameter of
interest as the regression model that would be estimated if the
entire target population was used as the sample. However, it
is unclear how one interprets coefficients in a misspecified
mixed-effects model. As we discuss below, there is no gen-
erally interpretable parameter that can be defined as the
projection of a misspecified mixed model onto the true
underlying model, whereas with the population average
model, there is hope to explicitly define this projection
(approximation). In fact, even when the fixed effects part of
a model is correctly specified, depending on how the true
random-effects model relates to the estimating model, the
estimated fixed effects can be very misleading. Since the
latent, random-effects distribution is nonidentifiable, larger
sample sizes do not help.

To illustrate the various concepts in this paper, we will
refer to a theoretical study of neighborhood crime rates and
their influence on the probability that neighborhood residents
walk more than 2 hours/week. We begin by reviewing the
general characteristics of the mixed model and GEE/popula-
tion average model approaches. Next, we contrast the interpre-
tation of regression coefficients of mixed versus population
average models, particularly in the context of neighborhood
studies. We then discuss the implications of considering the
regression model (the fixed effects part of the model) as an
informative approximation of the true model based on a
misspecified class of regression models. The paper ends with
a discussion comparing the 2 approaches.

MIXED MODELS

A mixed-model approach is predicated on the idea that
heterogeneity exists across neighborhoods for some of the
regression coefficients, and that the heterogeneity can be
represented by a probability distribution. This approach pro-
vides a specific model for the conditional distribution of the
outcome given covariates and random effects, and the distri-
bution of random effects given covariates, implying a fully
specified model for the distribution of outcome, given covari-
ates Let Y; be the outcome for subject / within neighborhood
(X | B) the average “response” of a person with the same
covanates X, B a set of fixed coefficients, and U(a, X;;) an
error term that is a function of “neighborhood” random
effects, a;, and perhaps is also a function of the covariates.
The mean of the i™ person in the /™ neighborhood in this

context can be written as:

468 | www.epidem.com

E(Y; 1 Xy, o) = gl(Xy; | B) + Uyley, X)) e))

g is the link function depends on the regression (eg,
linear: g~ '(u) = u,

log:g~'(u) = log(u), logistic: g~ '(u) = log[u/1—u)])
and E{Uya;, X;) | X;;} = 0. To make this notation more
concrete, consider Y;; = 1 if subject i in neighborhood j walks
more than 2 hours per week, 0 otherwise and X is a
continuous measure of crime rate for neighborhood j (would
be the same for each i within ;). Here is a simple random-
effects model that relates Y;; and X, allowing for both
neighborhood-to-neighborhood variability in the underling
probability of walking (at X;; = 0, represented by a,) as well
as variability in the slope of the logit of the probability versus
crime rate (represented by «a)):

P(Y;=11X, a)

- P(Y; = 11X, a)

=Bo T ag + (B t ayXy;, o~ MVN(O, 2.

In this case, the logit link is used because
and thus

Ey 1 X @) = POty = 11X, ), p0y 1 B) = Bo +
B Xy where B = (B B> Uley, Xy) = ay; + a;X; and
a; = (ay, a;;). Thus, the model for the mean walking
variable of an individual within neighborhood j is a function
of measured variables (X;), unknown parameters (B), and
unmeasured (latent) variables (o). The estimates of the so-
called fixed effects (8) and parameters of the distribution of
the error terms are then derived via maximum likelihood (or
restricted maximum likelihood). Due to the conditional error
distribution, the mean model implies a model for Y;, given X;;
and o;. In addition, if one also asserts a model for the
distribution of e, given X; (as we have in the example above)
then one can derlve the likelihood of the observed data,
specifically of Y, given Xj;. This likelihood is derived by
integrating the hkehhood for theoretical data (as if one
observes U{(a;, X;;)) over the proposed distributions of the
residual error and a,. The inference (ie, standard error calcu-
lations) for the estimates of the coefficients are typically
derived via standard maximum likelihood inference (or re-
stricted maximum likelihood), the accuracy of which relies
on both the underlying mean and error distribution models
being correctly specified.

Given the class of mixed models usually considered
(Equation 1), the regression coefficients in the linear and
log-linear mixed models can be interpreted as either coeffi-
cients of the conditional mean of Y;; and X; (conditional on

) or as coefficients of the population average association of
; and X;: E(Y; | X;;). We discuss in more detail later the
spec1ﬁc 1nstance of loglstlc regression models where, unlike

Y, is binary,
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the linear and log-linear case, the coefficients are not equiv-
alent in the random-effects and population-average models.
Because of the overlap of interpretation of the coefficients in
the linear/log-linear case, one can obtain “robust” inference
for the coefficients, (relying only on correct model for E£(Y; |
X)), either by appropriately bootstrapping'® or using a sand-
wich-type estimator.'' However, the typical inference pro-
vided by mixed models algorithms is based on the assumption
that the model for the underlying random effects distribution
is correctly specified.

The likelihood of the observed data with respect to the
distribution of both the observed and unobserved latent vari-

ables (density of Y, given X)) in a mixed model is as follows:

L(Y; 1 X;)= j Sy 1 Xy, apph(ey | Xpday, 3

&

which can be interpreted as the average probability density
function of Y; given (X, a;) averaged over the probability
density of a;, A(e; | X;)). For instance, in our example above
(Equation 2):

+x

LY, 1 X)) = f J P(Y; 1 Xy, oy, agp)h(ayy, oy)dag, day,

—% —%

where 4 is the multivariate normal probability density func-
tion with mean vector (0, 0) and covariance matrix, 2. The
mixed model in which data for individuals i, within the same
neighborhood j, are generated from common random vari-
ables o, will imply correlation of the observations within the
same neighborhood. This often motivates the use of such
models. However, an infinite variety of combinations of
densities fand 4 could provide the same marginal distribution
of ¥y, given X;.. This means that the random-effects model for
the density is nonparametrically nonidentifiable, because only
the distribution of the observed data (the ¥,;, X;)) can provide
information about the fit of competing models. There are
an infinite number of combinations of f{Y; | X, «;) and
h(a; | X;;), which result in the same L(Y;; | X;;). When these
models are used, the hope is that the misspecification of the
joint distribution of the error terms and random effects does
not make the estimates and inference provided by this pro-
cedure unduly misleading.

POPULATION AVERAGE MODELS
The coefficient estimates returned by the generalized
estimating equations (GEE) typically used to estimate popu-
lation average models (sometimes called marginal models)
describe changes in the population mean given changes in
covariates, while accounting for within-neighborhood non-
independence of observations when deriving the variability

© 2010 Lippincott Williams & Wilkins

estimates of these coefficients. One can also use maximum-
likelihood-based methods for estimation of this parameter
(for instance, see Heagerty and Zeger®), so we do not want to
confuse the estimation method (GEE) with the parameter
(population-average models). The GEE approach does not
require distributional assumptions because estimation of the
population-average model depends only on correctly speci-
fying a few aspects of the observed data-generating distribu-
tion (ie, the mean of the outcome given the covariates), not on
the entire joint distribution of observed data and random
effects. The GEE approach requires only (1) proposing a
parameter of interest (in our case, the coefficients in the
model of E[Y; | X,] or the probability of walking among
individuals that live in neighborhoods with crime rate X;) and
(2) finding an estimating function that has mean 0 if the true
parameters are entered into that estimating function. We
provide an associated technical report'® with a general form
of the estimating function on which the estimating equations
are based.

For linear models, the estimating-equation approach
sometimes provides practically the same estimator of the
parameters (for instance, a type of weighted least squares) to
a specific mixed model (eg, the estimator that is based on
maximum likelihood and a mixed model). For instance, a
simple random intercept linear model implies equal variances
for all observations and equal covariances of all possible
paired observations within the statistical unit (neighborhood)
and as always no correlation of observations made on differ-
ent units. This will yield the same estimates as the exchange-
able working correlation model in GEE. Thus, in specific
circumstances, the estimates provided by a GEE approach
and a mixed-model approach (where both result in the same
estimated variance-covariance model of observations on the
same unit) are equal. However, the 2 approaches depart in
this case when deriving the inference for what might be
equivalent parameter estimates of (3. With the estimating-
equation approach, no likelihood has been specified, so max-
imum likelihood inference is not available for these estima-
tors. Instead, robust or sandwich inference is typically
provided.* With the more technical detail available in the
associated technical report,'> one can show that these esti-
mators are asymptotically linear (ie, they can be written
asymptotically as a sum of independent and identically dis-
tributed random variables, called the influence curve). If there
is a closed-form representation of the influence curve (which
will be the same dimension as the number of coefficients, 3)
one can derive robust inference of 3 and the resulting stan-
dard errors by estimating the sample variance-covariance of
these random variables (influence curve components), mak-
ing no assumptions about the underlying distribution of the
data. To gain some intuition, we note that an equivalently
valid method of inference in this case would be the nonpara-
metric bootstrap, where one (1) randomly resamples neigh-
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borhoods with replacement to create a new pseudo-popula-
tion of the same size (with regard to number of independent
units) as the original data, (2) performs the same estimation
procedure as conducted on the original data, and (3) repeats
this procedure many times. For each run of the bootstrap, b,
let Bb, b = 1,...,B be the estimated vector of coefficients,
B = (B, B, .. .B. Now, the variance-covariance of the
estimated coefficients among these bootstrap samples is pro-
vided by simple sample variance-covariance estimates of

1 B
Bb, €g, CéV(Bb Bj) = E 2 (B? - EB‘!)(BJIJ - Eéj)5 where
b=1

1 8
BB = -S 8.
B; 3 EIB,

The one caveat to an otherwise straightforward ap-
proach is that the number of neighborhoods has to be suffi-
ciently large; the inference is asymptotically correct but not
necessarily accurate in smaller samples. Thus, one should be
skeptical of the robust standard error estimates based on the
influence curve in GEE in cases in which the number of
neighborhoods is relatively small. In the case of a few
neighborhoods with large numbers of observations, it might
be preferable to base inference on certain assumptions (say
exchangeability) and thus capitalize on the large number of
subunits (people) available for estimating the few compo-
nents of the variance-covariance matrix; this would rely on
the so-called “naive” inference returned by some GEE pro-
cedures.

PARAMETER INTERPRETATION IN MIXED
VERSUS POPULATION AVERAGE MODELS
To illustrate the differences in parameter interpretation
between mixed models and population-average models, we
continue with the example relating crime rates within neighbor-
hoods to the mean walking level of neighborhood residents. We
now use a simpler random intercept version of Equation 2:

logit [P(Y, = 11X, a))]
=B+ ag; + BlXx_'j’ Qg; ~ NO,0). 4

Within this model, the interpretation of the coefficient
B, relates changes in the mean of the outcome (proportion
walking) via changes in the crime rate within the higher units
(neighborhoods). In general, for multivariable random-inter-
cept logistic-regression models, the nonintercept fixed-effect
parameters are interpreted as the log [odds ratio (OR)] for a
change in the associated explanatory variable, holding the
neighborhood fixed. In our example, B, is the log(OR) of
walking for a unit increase in crime rate holding the neigh-
borhood fixed.

Now, assume a logistic regression population average
model, or logit [P(Y; = 11X,)] = B; + B.X; (note that the

470 | www.epidem.com

random intercept model above does not imply this form as the
correct population average model), where * indicates that
these coefficients are not the same parameters as in the
random intercept model. Specifically, B] is a measure of
association relative to changes in explanatory variables across
neighborhoods or the log(OR), comparing the probability of
walking for individuals who live in neighborhoods that differ
by 1 unit of crime rate.

Although they estimate theoretically different parame-
ters in this logistic case, for linear and log-linear models, the
coefficients from the typical specification of mixed-effects
models will be numerically equivalent to coefficients from
the population-average models, given that both models imply
the same model for E(Y;; | X). In the linear case, this can be
seen by noting that population-average model is derived by
averaging the neighborhood-specific model across neighbor-
hoods, or

[/
= F‘*("Yij IB) + Eaj[Uij(aj, X;,)] = "L(/Yij [ B).

Thus, for linear and log-linear models, the distinction
between estimating a within-neighborhood effect using max-
imum likelihood estimation and a population-average effect
using GEE is less critical; the coefficient estimates returned
from the mixed-model estimating procedures are estimates of
both such effects.

In contrast, much has been made of the differences in
the actual numerical values of coefficients from a logistic
mixed model versus the population-average model. For in-
stance, one can show that the population average OR is
always closer to the null value of 1 than the corresponding
mixed effects OR when the true model is a simple random
intercept model.’? To be more concrete, consider a situation
with Xj; is binary (crime rate 1 = high, 0 = low), then the
slope coefficients in a random-intercept logistic-regression
model is the average within neighborhood log(OR) of walk-
ing when the neighborhood is at high versus low crime,
whereas the population-average logistic regression produces
an estimate of the log(OR) that compares the average prob-
abilities of walking (averaged across all neighborhoods) in
high-crime versus low-crime neighborhoods.

For typical cross-sectional neighborhood-level data
(the Xj; is constant for all i within a /), the estimate of the
association within the random effects model has to come
from comparisons across neighborhoods, because no within-
neighborhood log(OR)s are estimable directly. Thus, the
estimate of the slope coefficient (the (3, in Equation 4)
depends on assumptions about the distribution of the random
effect: by assuming, for example, normality of an unmea-
sured random effect, only then is the within-neighborhood
effect estimable from the data. Thus, papers such as Larsen
and Merlo,'® which provide statistics for characterizing the

E(Y; 1 X;) = E[E(Y; | Xy, )]
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amount of between-neighborhood variability retumed from
these random effects models, are useful only insofar as the
assumptions behind these random-effects models are not
strongly violated. Note that Carlin et al'* discuss another inter-
esting latent-variable model based on discrete mixtures, and
provide an example in which the typical normal assumption for
the random effect is questionable. However, one should be
cautious, when interpreting estimates that are sensitive to distri-
butional assumptions on unmeasured variables.

REGRESSION MODELS AS PROJECTIONS

A appropriate analytic approach is to: (1) propose the
scientific question of interest, (2) determine the relevant
parameter of interest that addresses the question, (3) propose
an estimator that might require empirically nonidentifiable
assumptions, and (4) report the estimate with appropriate
caveats.® Latent variable models, including mixed models
(see Equation 2 for instance), always require assumptions
untestable by the data. These models might uniquely address
the specific scientific question of interest, for instance by
evaluating the association of latent variables, but the infor-
mation they provide in the form of the estimates of the
parameters of interest (for instance, the within-unit associa-
tions of neighborhood-level variables) can be misleading if
the latent variable model is misspecified. To derive reliable
likelihood-based inference, the model should not represent an
approximation, but rather the true form of the mean model
given the covariates and latent variables. Lack of compelling
theory for a particular model choice, and an insufficient
sample size to estimate the mean model flexibly, results in
estimated regressions models that are, at best, reasonable
approximations to the conditional mean. If the latent variable
part is not modeled correctly, it is unclear how to interpret the
fixed-effects estimates even if that part of the model is

250
]

— truth
- - projection
- fit

200
1

150
s

100
1

50
L

correctly specified. The situation becomes even more com-
plicated with the misspecification of the fixed-effects portion.
In contrast, one could reasonably justify estimating an
informative approximation of the true population-average
model (and in theory this parameter is estimable with few
assumptions in large sample sizes). With this approach, one
could avoid any model specification (ie, the model is non-
parametric) and the parameter of interest would be some
approximation of E[Y;; | X;] within the proposed class of
estimating models (eg, linear with only main effects). That is,
one can define explicitly the parameter of interest as a
function of the distribution of the observed data (X, Y). (Note:
the approximation can be different depending on what work-
ing correlation structure one uses in GEE—see an associated
technical report for details.'®) In essence, one can think of the
parameter of interest as the coefficients one would derive if
the proposed model, u(X;; | B), using a particular algorithm,
was fit to not just a sample of people in a sample of
neighborhoods, but instead the entire target population of
interest using the proposed estimation algorithm (eg,
weighted least squares using the weight matrix implied by the
working correlation model specified in the GEE models).
For example, consider a simple nonrepeated-measures
data structure and the true model ¥ = b, + b, X + b,X* + ¢
with e~N(0, 0°). Assume one fits a linear model of ¥ on X to
data from the underlying population generated by this qua-
dratic model. Also assume that the parameters of interest are
the ¢, and ¢, one would obtain if one fit a linear model ¥ =
¢o + ¢ X + € to the entire population. Figure 1 shows (1) the
underlying true mean model, (2) the projection of a linear
model on the truth, (3) actual data from the underlying true
model, and (4) the fit of a linear model to that data. This
caricature illustrates what generally happens when regression
models are fit for explanatory purposes. If one thinks of the

© 2010 Lippincott Williams & Wilkins

L

FIGURE 1. Example of truth, projec-
tion, data, and fit.
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parameter of interest as the true conditional mean of ¥, given
the covariates of interest, then one is almost always wrong.
However, if one views the parameter of interest as a projec-
tion of the “truth” onto some smaller set of models (eg,
linear), this is often a reasonable parameter of interest. (Of
course, one can easily come up with exceptions, for example
a linear model would fail to capture a U-shaped relationship.)
For instance, one might want to know the average trend. In
that case, a linear fit to data generated from an underlying
nonlinear model is a legitimate parameter. Other examples
could include fitting a linear model when the true model is
log-linear, etc.

Consider the case of a mixed model in which the true
data generating distribution has the following form (binary
outcome) of:

P(Yij =1 l*’Yij’ by)
I“P(Yij =1 I/Yij’ boy)
= by + leij + bOieXP(bzij)s bo; ~ N(0, 1)

This is a random effects model, but one in which the
OR for a unit change in X, by unit i, depends on the level
of the random effect, b,;. Now, we examine different fits to
data generated from this data-generating distribution (note
that X;; is uniformly distributed over the integers 0 to 10,
by, = =5, b; = log(2), b, = 0.5, 100 units and 100
subunits/unit). The results of this analysis are presented in
Figure 2, which depicts (1) the true marginal probability of
the outcome, by X;;, P(Y; = 11X,), (2) the best approx-
imation based on a simple logit-linear model and indepen-
dence working correlation model, (3) the corresponding

GEE estimate of this approximation, (4) the estimate using
the same data as that for the GEE model of a simple
random effects (random intercept) logistic regression
model (the plot is done at the random effect, b,; = 0), and
(5) the population-average mean estimate derived from the
misspecified random effects model by marginalization
over the estimated random effects distribution.

The results emphasize that the projection of the popu-
lation average is something one can hope to estimate, and that
it bears a rigorously definable relation to the true underlying
association. In contrast, the misspecified random-effects
model estimate bears little relation to the true underlying
marginal association (of course, it is not an estimate of this
parameter). It is unclear how to interpret the results of this
model because the distribution of individual curves (ie,
neighborhood-level curves) can differ widely depending on
the form of the random-effects model and the distribution of
the random effects.

Finally, the population-average mean estimate from a
misspecified random-effects model is of course biased and
unnecessarily so, as one need not specify the correct random-
effects part to estimate this parameter. If the random effects
part is misspecified, both the resulting neighborhood-specific
effects (eg, coefficients in a random effects model) and the
implied estimated population average model can be unpre-
dictably biased relative to the quantities they are estimating.
Heagerty and Zeger® make a very similar point, that the
regression parameters in conditionally-specified models (the
fixed effects in random effects models) are much more
sensitive to random-effects assumptions than are their coun-
terparts in the population-average model.

Given the objective of providing a reasonable approx-
imation of the population average within covariate groups,

----  Random Effects at Mean Intercept
— — Pop. Ave. Estimate from RE Model

Q.
—— Truth
© --- True Projection
sl |- GEE Fit
FIGURE 2. Example of truth popula- S A

tion average model, true projection
onto a logit-linear regression model,
a GEE fit assuming a simple logit- 3
linear model as estimated from ran-
dom sample of data, a corresponding
estimate of the fixed effects coeffi-

P(Y=1(X=x)

N
cients in a logit-linear random effects ° ]
(RE) model with a normally distrib-
uted random intercept by unit, and
the population average model de- 3 -

rived from the estimate of this ran-
dom effects model.
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then inference can be derived from the robust sandwich
estimators of variability used by the GEE approach. Freed-
man'® discusses how the robust estimators of standard errors
are correct even if the mean model is misspecified. However, he
argued that one wants a confidence interval for the true param-
eter, not its projection. In contrast, we take the perspective that
these projections can yield useful information about the relation-
ship of neighborhood factors and health outcomes and thus, for
many purposes, the important issue is how inferences are de-
rived for this nonparametric model. In Figure 1, the above case
of an interpretation of linear projection is relatively straightfor-
ward, but further research is needed to interpret the more general
case (ie, when the coefficients of a mixed model cannot be
interpreted as coefficients in the corresponding population aver-
age model, such as in the logistic case). There are some cases
where the estimated parameter can be quite misleading relative
to the parameter of interest (see for example van der Laan et
al'7). Neugebauer and van der Laan'® describe the parameter of
interest as some nonparametric projection of regression models
onto the true underlying (causal) regression form. Their devel-
opment of the theory is modified in our technical report.'
Essentially, given that the projection of the mean model is
interpretable and useful, one can always gain robust inference
using the type of robust inference provided by GEE or by using
the appropriate bootstrap.

DISCUSSION

The contrast of estimation of the population-average
model and corresponding mixed-effects models is part of
larger issues in statistical estimation and identifiability. A
simple list of the elements of data analysis provides a basis
for understanding the intersection of the scientific question,
data and statistical estimation: (1) the observed data, (2) the
model (set of possible data-generating distributions given
background knowledge), (3) parameter of interest of data-
generating distribution that addresses scientific question, (4)

estimation of this parameter, and (5) additional nontestable
assumptions on data-generating distributions. The data can of
course identify (without further assumptions) only the joint
distribution of the observed data, say O; = (Y}, X)), where Y
and X; are the vector of outcomes and corresponding matrix
of explanatory variables measured on neighborhood j. Mixed
models, however, estimate parameters of a combined latent
variable/observed variable distribution, say O = (1), X, o),
where again a; are the neighborhood-level unobserved ran-
dom variables. Interpretations of parameters of the distribu-
tion of O should require justifications (outside the data) as
to why this theoretical data structure is warranted, much as
causal inferences from associations in observational data
require untestable assertions such as unmeasured con-
founding. Raudenbush®® sensibly argues that, if the scien-
tific question of interest suggests parameter estimates that
involve assumptions on latent variable distributions, then
inference based on such assumptions in unavoidable. How-
ever, one must acknowledge that the evidentiary weight of
such inference is not on par with the inferences made
regarding parameters based on assumptions only on the
observed data distribution.

We have already discussed reasons why the data can
not identify the true distribution of O* (assuming the true
distribution can even be represented in that way). How-
ever, the data can be used to examine the relative merits
(fit) of competing models for OF. In fact, as opposed to the
GEE approach, a very attractive approach is to fit various
models (random effects and others) that result in different
models for the distribution of O;, and use likelihood-based
procedures (such as likelihood-based cross-validation) to
select those models. However, inference in the end should,
without further untestable assumptions, be only with re-
gard to the resulting distribution of the observed data, O,.

The Table provides a summary of critical issues to
consider when selecting a modeling approach. If the analyst

TABLE. Summary of Approaches for Mixed Models and GEE

Mixed Models

GEE

Focus of interest
Parameter interpretation
Linear (estimates equivalent)

Neighborhood specific

Binary (estimates NOT equivalent)

Variance components and regression coefficients

Change in the mean outcome for a unit change in the
associated neighborhood exposure, keeping the
random effect (neighborhood) fixed

The log(OR) of an outcome for a unit change in the
associated neighborhood exposure, keeping the
neighborhood fixed. Not identifiable in cross-sectional

Regression coefficients

Population average

Change in the mean outcome for a unit change in
the associated neighborhood exposure across all
of the neighborhoods observed

The log(OR) of an outcome for a unit change in
the in the associated neighborhood exposure
across all of the neighborhoods observed

studies of neighborhoods without additional
assumptions on random effects distribution.

Assumptions

Pitfalls
regression diagnostics)

Correctly specified error distribution

SE not robust to model misspecification (can use

No. neighborhoods sufficiently large for robust
estimation of standard errors

With small no. neighborhoods, SE biased
(although not substantially so in simulations
with small numbers of units)
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aims to understand the error structure of the data-generating
distribution, or wants to derive the estimate of within-unit OR
from cross-sectional data, then there is no choice but to use
modeling procedures that make explicit untestable assump-
tions of the data-generating distribution, such as those within
mixed models. One should be cautious, given how sensitive
the conclusions can be to the assumptions of these models.
However, if the focus of the analysis is the estimation of
mean effects as well as the estimation of the inference of the
coefficients in the model (eg, the association of walking and
neighborhood crime rate), then estimating the population-
average model via GEE provides a compelling alternative.
GEE allows robust inference even if the correlation model is
misspecified, or the parameter of interest is not the true mean
model but a projection onto a class of approximating models
(eg, linear model), as in Figure 1 above. We assert that this is
usually the case in statistical models of observational data
with many explanatory variables.

We have compared 2 methods for estimating neighbor-
hood-level effects. We contend that researchers should make
explicit the assumptions of each method and also consider
situations where one method might be preferred over the
other. Previous discussions have provided interesting points
regarding each method, and philosophical viewpoints on the
relative merits.'° 2! However, the relative merits are not a
question of philosophy—once the data are presented, the
parameter of interest stated, and the assumptions made ex-
plicit and accepted, then the choice should be straightforward.
In addition, this choice of estimating population-average
models versus mixed models goes beyond a choice between
GEE and mixed models. Similar questions are being actively
debated in the literature on causal inference. There are issues
regarding competing likelihood-based latent variable meth-
ods (such as structural equation models) versus estimating
function-based methods®® and related targeted maximum
likelihood®® methods that avoid latent-variable formulations.
The underlying issues and user recommendations are similar.
Does one rely on correct specification of untestable aspects of
the data-distribution (the latent variable approach) or on the
more narrow assumptions available from the other causal
inference methods? The answer will depend on the goals of
the analyses, but should also depend on information available
to the researchers. Knowing the assumptions of each method
and how these assumptions affect the inferences from the
analysis will enable researchers to determine the best ap-
proach to analyzing their data.
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